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Abstract We look for a general framework in which the Ekeland duality can be formulated.
We propose a scheme in which the parameter sets are provided with a coupling function which
induces a conjugacy. The decision spaces are not supposed to have any special structure. We
examine several examples. In particular, we consider some special classes of generalized
convex functions.
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1 Introduction

It is well known that a number of physical phenomena can be described by a notion of sta-
tionarity rather than by the minimization or maximization of some functional. Thus, a duality
pertaining to stationarity is desirable. Such a duality exists: it is the Ekeland duality ([13,14]).
In [56] we made attempts to show that this duality can encompass various duality results.
On the other hand, in spite of the fact that the most classical duality schemes are devoted to
minimization (or maximization) procedures, one may wonder whether they have a bearing
on stationarity.

It is the purpose of the present paper to give an affirmative answer to that question. In par-
ticular, we endeavour to show that some dualities of generalized convexity can be combined
with the Ekeland duality. We stress two points. First, we intend to show that the Ekeland
duality scheme can be performed even when the decision space X has no special structure.
Second we intend to show that the linear structures on the parameter space W and it dual
space W ′ are not necessary. Thus we allow coupling functions between W and W ′ which
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are quite general. Such aims have been reached for the usual duality theories using either
Lagrangians or perturbations (see [54,58] and their references).

In Sect. 1 we give a version of the Ekeland duality in a framework with no linear structure.
Such an extension is made in the spirit of a general stream illustrated in [45] and in numerous
works (see [54] for a recent extensive bibliography). We use nonlinear coupling functions
and show that the essence of the Ekeland’s scheme can be preserved, what brings the possi-
bility to apply it to augmented Lagrangian duality, quasiconvex duality, starshaped duality,
submodular duality. . . We also look for a structure which is as bare as possible (hence, as
general as possible). In particular, while we suppose that the parameter space W is paired
with a dual space W ′ through a coupling function, we do not assume that the decision space
X is anything else than a set, even if we associate to it a related space X ′ with a base point
0X ′ . In particular, X ′ may be the set of all functions on X, or some set F(X) of functions
from X to R∞ := R ∪ {+∞} or R := R ∪ {−∞,+∞} and 0X ′ the null function on X.

Since the concept of critical point may emerge from the concepts of nonsmooth analysis,
we introduce two classes of functions which are defined with the help of a subdifferential.
In the second one, which is symmetric, the idea of fuzziness plays a crucial role.

When a more structured framework is available in which the decision space X is also
provided with a coupling function, it is possible to compare our approach to the original one
by Ekeland.

We present several examples. In particular, we devote some attention to the quadratic case
and to some special cases of quasiconvex analysis. Such examples may enlarge our views
of duality methods which are already rich and varied (see [1–3,5–7,9–12,15–21,24–34,44–
63,65–69,71–92] and the references therein and below).

2 The Ekeland duality scheme

In several books and papers (see [37,49,53,54]) the notion of duality is described in general
terms as in the following definition which is adapted to optimization problems.

Definition 1 Given two sets W, W ′, a duality D between the set R
W

of extended real-

valued functions on W and the set R
W ′

of extended real-valued functions on W ′ is a map

D : R
W → R

W ′
such that, for any family ( fi )i∈I in R

W

D(inf
i∈I

fi ) = sup
i∈I

D( fi ). (1)

Such a map is clearly antitone: D( f ) ≥ D(g) whenever f, g ∈ R
W

are such that f ≤ g.

It gives rise to a reverse duality given by D′(h) := inf{g ∈ R
W ′ : D(g) ≤ h} for h ∈ R

W ;
then D′ ◦ D (and D ◦ D′) is homotone, i.e., such that D′(D( f )) ≤ D′(D(g)) whenever

f, g ∈ R
W

are such that f ≤ g. A duality D which is compatible with addition of constants,

i.e., such that D( f + r) = D( f ) − r for any f ∈ R
W

and any r ∈ R considered as a
constant function is a tool of pleasant use. It is called a conjugacy (or conjugation). It can
be shown that any conjugacy can be obtained as a generalized Legendre–Fenchel transform
associated with some coupling function c : W × W ′ → R := R ∪ {−∞,∞}, and defined
by D( f ) = f c, where

f c(w′) := − inf
w∈w

( f (w) − c(w,w′)). (2)
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Then, the reverse duality is given by a similar formula:

gc(w) := − inf
w′∈W ′(g(w′) − c(w,w′)).

It has been shown in several papers [4,37,36,54,58,59,61] and books ([45,67,84]) that
conjugacies are versatile tools. Up to now, such tools have been used for minimization or
maximization problems only. In the present paper we propose to use them for the study of
critical points. The transformations we will consider will go outside the framework we have
just described.

The notions of critical point and of critical value can be cast in a general abstract framework
in which there is no linear structure.

Definition 2 Given two sets, X, X ′ and a base point 0X ′ of X ′, a point x of X is called a
critical point of a subset J of X × X ′ × R if there exists some r ∈ R (called a critical value
of J ) such that (x, 0X ′ , r) ∈ J. Then the pair (x, r) is called a critical pair of J.

The extremization of J consists in the determination of the set extJ of pairs (x, r) ∈ X ×R

such that (x, 0X ′ , r) ∈ J.

In the classical case, X is a normed vector space (n.v.s.), X ′ is the topological dual space
X∗ of X and J is the one-jet of a differentiable function j : X0 → R, where X0 is an open
subset of X :

J := {(x, Dj (x), j (x)) : x ∈ X0}.
Taking the origin of X∗ as a base point, we recover the usual notion. One may also suppose
as in [13] that X is a differentiable manifold and replace the derivative Dj (x) of j by d jx ,
the restriction to the tangent space to X at x ∈ X of the 1-form d j.

The choice of the general framework we adopt is prompted by the concepts of subdiffer-
ential. In order to conciliate the local concepts of nonsmooth analysis and the global concepts
of subdifferentials linked with dualities, we adopt a general, loose notion. In general, some
more conditions are required.

Definition 3 Given two sets X, X ′, a base point 0X ′ of X ′, a subdifferential on a class F(X)

of functions on X is a map ∂ : F(X) × X → P(X ′) with values in the space of subsets of
X ′ which associates to a pair ( f, x) ∈ F(X) × X a subset ∂ f (x) of X ′ which is empty if x
is not in the domain dom f := {x ∈ X : f (x) ∈ R} of f .

We refer to [41,42,49,61,85] for the study of subdifferentials associated with a general
duality. When a coupling function c : X × X ′ → R is available, this notion is close to a
classical notion, namely the Fenchel–Moreau subdifferential: for x ∈ dom f

∂c f (x) := {x ′ ∈ X ′ : c(x, x ′) ∈ R, f (·) ≥ c(·, x ′) − c(x, x ′) + f (x)} (3)

and ∂ f (x) = ∅ when x ∈ X\ dom f. Thus ∂c f (x) is the set of linear forms x ′ such that
there exists some associate c-affine function c(·, x ′) − r, with r ∈ R which minorizes f and
takes the same value at x .

In the sequel we also use the subdifferentials of nonsmooth analysis, in particular the
proximal subdifferential ∂ P j of j , the Fréchet (or firm) subdifferential ∂ F j of j , the Dini–
Hadamard (or directional) subdifferential ∂ D j of j and the Clarke–Rockafellar subdifferen-
tial ∂C j of j (See [8,67]). Their values at x ∈ X\ dom j are empty and when x ∈ dom j
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they are given respectively by

x∗ ∈ ∂ P j (x) ⇔ ∃c, r ∈ P : ∀u ∈ B(0, r) j (x + u) ≥ x∗(u) + j (x) − c ‖u‖2 ,

x∗ ∈ ∂ F j (x) ⇔ ∃µ ∈ M : ∀u ∈ X j (x + u) ≥ x∗(u) + j (x) − µ(‖u‖) ‖u‖ ,

x∗ ∈ ∂ D j (x) ⇔ ∀u ∈ SX , ∃µ ∈ M : ∀(v, t) ∈ X × R+ j (x + tv) ≥ x∗(tv) + j (x)

− µ(‖u − v‖ + t)t,

x∗ ∈ ∂C j (x) ⇔ ∀u ∈ SX , ∃µ ∈ M : ∀(y, v, t) ∈ X2 × R+ j (y + tv) ≥ x∗(tv)

+ j (y) − µ(s)t,

where P := (0,+∞), SX := {u ∈ X : ‖x‖ = 1}, s := ‖u − v‖ + ‖y − x‖ + t and M
is the set of modulus, i.e., (nondecreasing) functions µ : R+ → R+ ∪ {+∞} satisfying
limr→0 µ(r) = 0; for simplicity, in the last relation we have assumed that f is continuous
at x .

Given a subdifferential ∂, one can take for J the subjet (or hypergraph) J ∂ j of a function
j : X → R∞ := R ∪ {∞} associated with ∂ :

J ∂ j := {(x, x ′, r) ∈ X × X ′ × R : x ′ ∈ ∂ j (x), r = j (x)}.
In such a case, extJ is the set of pairs (x, r) such that 0X ′ ∈ ∂ j (x), r = j (x).

However, extremization problems are not limited to the preceding two cases. In particular,
one may take for J some subset of the closure of a subjet with respect to some topology (or
convergence) on X × X ′ × R. Another case of interest appears when X is a n.v.s. and J is
the hypergraph of a multifunction F : X ⇒ R associated with a notion of coderivative or
normal cone:

H(F) := {(x, x∗, r) ∈ X × X∗ × R : (x∗,−1) ∈ N (G(F), (x, r)), r ∈ F(x)},
where G(F) is the graph of F and N (G(F), (x, r)) denotes the normal cone to G(F) at
(x, r). The normal cone N (S, s) at s to a subset S of a n.v.s. X can be defined in different
ways. When one disposes of a subdifferential ∂ one may set N (S, s) := R+∂dS(s), where
dS is the distance function to S: dS(x) := inf{d(x, y) : y ∈ S} or N (S, s) := ∂ιS(s), where
ιS is the indicator function of S given by ιS(x) = 0 for x ∈ S,+∞ else. Correspondingly,
introducing the coderivative D∗F(x, r) of F at (x, r) ∈ G(F) by

D∗F(x, r) := {x∗ ∈ X∗ : (x∗,−1) ∈ N (G(F), (x, r))},
we see that H(F) is the set of (x, x∗, r) ∈ X × X∗ × R such that x∗ ∈ D∗F(x, r).

The approach of Ekeland to duality ([13,14]) can be extended to the case of an arbitrary
coupling by the means of the following transformation. The set W appearing in the following
definition is usually a space of parameters and W ′ is its topological dual space if W is a n.v.s.,
but other cases may be considered since we do not suppose W (nor the decision space X )
has a linear structure.

Definition 4 Given arbitrary sets W, W ′ and a coupling function c : W × W ′ → R :=
R ∪ {−∞,+∞} between W and W ′, the c-Ekeland (or Legendre) map E : W × W ′ ×
R →W ′ × W × R is given by

E(w,w′, r) := (w′, w, c(w,w′) − r).

Clearly, E is a kind of involution: denoting by E ′ the mapping E ′ : W ′ × W × R →W ×
W ′ × R given by E ′(w′, w, r) := (w,w′, c(w,w′) − r), one has E ◦ E ′ = I, E ′ ◦ E = I,
so that E−1 = E ′ and E ′ has a similar form. In particular, when W ′ = W, one has E ′ = E,
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and E is a genuine involution. The transform E induces a correspondence between functions
on W and functions on W ′. It can also be applied to multifunctions.

Definition 5 Given a coupling c between W and W ′, the Ekeland transform E(J ) of a subset
J of W × W ′ × R is the image of J ′ := E(J ).

When J is an hypergraph, E(J ) is not necessarily an hypergraph. When J is the subjet
J ∂ f associated with a function f and a subdifferential ∂, the set E(J ) is not necessarily the
subjet of some function on W ′. Thus, it is of interest to introduce notions which impose part
of such a requirement.

3 Some adapted classes of functions

We first delineate a criterion ensuring that a dual function can be defined.

Definition 6 ([57]) Given a coupling c between W and W ′ and a subdifferential ∂ : F(W )×
W → P(W ′), a function f : W → R∞ := R ∪ {∞} is a c-∂-Ekeland function, in short an
Ekeland function, if for any w1, w2 ∈ W, w′ ∈ W ′ satisfying w′ ∈ ∂ f (w1) ∩ ∂ f (w2) one
has c(w1, w

′) − f (w1) = c(w2, w
′) − f (w2).

Then, the (c-∂-) Ekeland transform of f is the function f E : W ′ → R∞ given by
f E (w′) := c(w,w′) − f (w) with w ∈ (∂ f )−1(w′) for w′ ∈ ∂ f (W ), f E (w′) = +∞ for
w′ ∈ W ′\∂ f (W ).

Thus, the graph of f E is the projection on W ′ × R of E(J ∂ f ).

Example Given a coupling c : W × W ′ → R and a base point 0W ′ such that c(w, 0W ′) = 0
for all w ∈ W, let ∂c be the subdifferential associated to c as in (3): for a function f : W → R

and w ∈ dom f

w′ ∈ ∂c f (w) ⇔ f (w) ∈ R, ∀u ∈ W f (u) ≥ f (w) + c(u, w′) − c(w,w′).

Then any function is an Ekeland function since w′ ∈ ∂c f (w) means that f (·) − c(·, w′)
attains its infimum at w on W . Then, for w′ ∈ ∂ f (W ), one has f E (w′) = f c(w′) since for
all w ∈ (∂ f )−1(w′) both c(w,w′) and f (w) are finite. ��
Example Any convex function (on some n.v.s.) is an Ekeland function for the Fenchel-
Moreau subdifferential and f E = f c on ∂c f (W ). ��
Example Any concave function on some n.v.s. W is an Ekeland function for the Fréchet
and the Hadamard subdifferentials. In fact, for any w1, w2 ∈ W, w∗ ∈ W ∗ satisfying
w∗ ∈ ∂ f (w1)∩∂ f (w2) one has 〈w∗, w1〉− f (w1) = 〈w∗, w2〉− f (w2) since in such a case
w∗ is the derivative of f at wi (i = 1, 2), hence 〈w∗, wi 〉− f (wi ) = min{〈w∗, w〉− f (w) :
w ∈ W }. Then f E = −(− f )c on ∂c(− f )(W ) ��
Example Any linear-quadratic function on W is an Ekeland function for the usual coupling
function between W and its dual space W ∗. This assertion, proved in ([57]), can be gener-
alized to linear-quadratic functions which are densely defined, i.e., to functions f given by
f (w) := 1

2 〈w, Aw〉− 〈w, b〉 + c for some symmetric linear map A : W → W ′ := W ∗ with
dense domain D(A), and for some b ∈ W ′, c ∈ R. Let us prove that such a function f is an
Ekeland function for the directional subdifferential (that will prove that it is also an Ekeland
function for the firm subdifferential). We first observe that if w′ ∈ ∂ D f (w), then one has
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w′ = A(w) − b. In fact, given w ∈ D(A), w′ ∈ ∂ D f (w), for every u ∈ D(A) one has
〈w′, u〉 ≤ f ′(w, u) ≤ 〈A(w), u〉 − 〈b, u〉, as easily checked. Since D(A) is dense in W, we
conclude that w′ = A(w) − b.

Now let w′ ∈ W ′, w1, w2 ∈ X for i = 1, 2 be such that w′ ∈ ∂ D f (wi ). One has

〈wi , w
′〉 − f (wi ) = 〈wi , Awi − b〉 − 1

2
〈wi , Awi 〉 + 〈wi , b〉 − c = 1

2
〈wi , Awi 〉 − c

and, since A is symmetric and Aw1 = w′ + b = Aw2, one gets

〈w1, Aw1〉 − 〈w2, Aw2〉 = 〈w1, A(w1 − w2)〉 + 〈w2, A(w1 − w2)〉 = 0

Thus, 〈w1, w
′〉 − f (w1) = 〈w2, w

′〉 − f (w2) and one can write f E (w′) = 1
2 〈A−1(w′ +

b), w′ + b〉 − c, even if A is non invertible. ��
The following definition stems from our wish to get a more symmetric concept and a

dual function which would be defined on a set larger than ∂ f (W ). It is also motivated by
the convex case in which the domain of f E is the image of ∂ f which is not necessarily con-
vex, while a natural extension of f E is the Fenchel conjugate whose domain is convex and
which enjoys nice properties (lower semicontinuity, local Lipschitz property on the interior
of its domain. . .). Also, this concept takes into account fuzziness, a prominent feature of
nonsmooth analysis.

Definition 7 Let W and W ′ be normed vector spaces paired by a coupling function c :
W × W ′ → R and let W0, W ′

0 be open subsets of W and W ′, respectively. A l.s.c. function
f : W0 → R∞ is said to be a (generalized) Legendre function for c and a subdifferential ∂

if there exists a l.s.c. function f L : W ′
0 → R∞ such that

(a) f and f L are Ekeland functions and f L | ∂ f (W0) = f E | ∂ f (W0);
(b) for any w ∈ dom f there is a sequence (wn, w′

n, rn)n in J ∂ f such that(
wn, 〈wn − w,w′

n〉, rn
) → (w, 0, f (w));

(b′) for any w′ ∈ dom f L there is a sequence (w′
n, wn, sn)n in J ∂ f L such that(

w′
n, 〈wn, w′

n − w′〉, sn
) → (w′, 0, f L(w′));

(c) for w ∈ W0, w′ ∈ W ′
0, the relations w′ ∈ ∂ f (w) and w ∈ ∂ f L(w′) are equivalent.

Condition (b) (resp. (b′)) ensures that f (resp. f L ) is determined by its restriction to
dom∂ f (resp. dom∂ f L ). In fact, for any w ∈ dom f one has

f (w) = lim inf
u(∈dom∂ f )→w

f (u)

since f (w) ≤ lim infu→w f (u) and (b) implies f (w) = limn f (wn) for some sequence
(wn) → w in dom∂ f. Moreover, conditions (a) and (b′) imply that f L is determined by f.

Condition (b) can be simplified when ∂ f is locally bounded on the domain of f . In that
case, condition (b) is equivalent to the simpler condition

(b0) for any w ∈ dom f there exists a sequence (wn)n in dom ∂ f such that (wn, f (wn)) →
(w, f (w)).

Example Any classical Legendre function is a (generalized) Legendre function. ��

Example Any l.s.c. proper convex function is a (generalized) Legendre function, as shown
by the Brønsted-Rockafellar theorem. ��
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Example Recall that a subset C of a n.v.s. W is said to be evenly convex if either C = W ,
C = ∅ or if C is the intersection of a family of open half-spaces. A subset C of W is said
to be radiant (resp. evenly radiant) if it is convex (resp. evenly convex) and contains 0 or is
empty. A function f : W → R is said to be radiant (resp. evenly radiant) if its sublevel sets
(resp. strict sublevel sets) are radiant (resp. evenly radiant) subsets. Let W ′ be the topological
dual of W. The conjugacies associated with the coupling functions c�, c∧ given by

c�(w,w′) = −ι[w′>1](w), c∧(w,w′) = −ι[w′≥1](w)

are adapted to such classes of functions. In fact, for any function f on W, its conjugates
f �, f ∧ given by

f �(w′) := − inf{ f (w) : w ∈ W, 〈w,w′〉 > 1}
f ∧(w′) := − inf{ f (w) : w ∈ W, 〈w,w′〉 ≥ 1}

are l.s.c. radiant and evenly radiant, respectively, since for all r ∈ R one has

[ f � ≤ r ] = {w′ ∈ W ′ : 〈w,w′〉 ≤ 1 ∀w ∈ [ f < −r ]} =
⋂

w∈[ f <−r ]
[〈w, ·〉 ≤ 1] (4)

[ f ∧ ≤ r ] = {w′ ∈ W ′ : 〈w,w′〉 < 1 ∀w ∈ [ f < −r ]} =
⋂

w∈[ f <−r ]
[〈w, ·〉 < 1]. (5)

The subdifferential ∂∧ associated to c∧ is given by ∂∧ f (w) := ∅ if w /∈ f −1(R) and, for
w ∈ f −1(R)

∂∧ f (w) := {w′ ∈ W ′ : 〈w,w′〉 ≥ 1, f (w) = inf f ([〈·, w′〉 ≥ 1])}
= {w′ ∈ W ′ : 〈w,w′〉 ≥ 1, [ f < f (w)] ⊂ [〈·, w′〉 < 1]}.

Thus, w′ ∈ ∂∧ f (w) if, and only if, 〈w,w′〉 ≥ 1 and f ∧(w′) = − f (w) ∈ R. When f is
evenly radiant, for all w ∈ f −1(R)\{0}, the set ∂∧ f (w) is nonempty: since w /∈ [ f < f (w)],
there exist some w′ ∈ W ′, r ∈ R such that 〈u, w′〉 < r for all u ∈ [ f < f (w)] and
〈w,w′〉 ≥ r; if [ f < f (w)] is empty, we can secure these conditions with r=1 and otherwise
we have 0 ∈ [ f < f (w)] , hence r > 0 and then w′/r ∈ ∂∧ f (w).

Now, any function f is an Ekeland function for this coupling and the associated subdif-
ferential. In fact, if w′ ∈ ∂∧ f (w1) and w′ ∈ ∂∧ f (w2) for w1, w2 ∈ W we have

c∧(wi , w
′) − f (wi ) = − f (wi ) = − inf f ([〈·, w′〉 ≥ 1]) = f ∧(w′), i = 1, 2.

Moreover, if f is evenly radiant, for all w ∈ f −1(R)\{0} we have f ∧∧(w) := ( f ∧)∧(w) =
f (w) since the set ∂∧ f (w) is nonempty and for every w′ ∈ ∂∧ f (w) we have

− f ∧∧(w) := inf{ f ∧(z) : z ∈ [w ≥ 1]} ≤ f ∧(w′) = − f (w),

while the inequality f ∧∧ ≤ f always holds. In such a case, we also have w ∈ ∂∧ f ∧(w′).
Since f ∧ is evenly radiant, the roles of f and f ∧ are symmetric and for everyw′ ∈ ( f ∧)−1(R)

and w ∈ ∂∧ f ∧(w′), we have w′ ∈ ∂∧ f (w). The missing property to get a Legendre function
on W\{0} may be provided by the following criterion. In it, we say that f is upper regu-
lar along rays if for every w ∈ W\{0} one lim inf t→1+ f (tw) ≤ f (w). This condition is
satisfied if f is upper semicontinuous (u.s.c.) along rays, i.e., if for every w ∈ W\{0} one
has lim supt→1 f (tw) ≤ f (w). It is also satisfied if f is convex along rays, i.e., if for every
w ∈ W\{0} the function t �→ f (tw) is convex on P := (0,+∞). ��
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Proposition 1 Let f : W → R be a function which is upper regular along rays. Then f ∧ is
weak∗ lower semicontinuous (l.s.c.). If g : W ′ → R is coercive and weak∗ l.s.c., then g∧ is
u.s.c. along rays.

If f is such that f (w) → −∞ as w → 0, then f ∧ is coercive. If g : W ′ → R is coercive,
then g∧(w) → −∞ as w → 0. Thus, when f is evenly radiant, f ∧ is coercive if, and only
if, f (w) → −∞ as w → 0.

Thus an evenly radiant function f is u.s.c. along rays and such that f (w) → −∞ as
w → 0 if, and only if, f ∧ is weak∗ l.s.c. and coercive.

Proof Let us show that for all r ∈ R, the sublevel set [ f ∧ ≤ r ] is closed when f is upper
regular along rays. Let (w′

i )i∈I → w′ be a weak∗ converging net, with w′
i ∈ [ f ∧ ≤ r ] for

all i ∈ I . By (4), we have to show that for all w ∈ [ f < −r ] we have 〈w,w′〉 < 1. Now,
since f is upper regular along rays, there exists some t > 1 such that f (tw) < −r. Then,
for all i ∈ I we have 〈tw,w′

i 〉 < 1, hence 〈tw,w′〉 ≤ 1 and 〈w,w′〉 < 1.

Now, let us suppose g is coercive and l.s.c. and let us show that g∧ is u.s.c. along rays.
Otherwise, there exist some w ∈ W\{0}, α > 0 and a sequence (tn) → 1 such that
g∧(tnw) > g∧(w) + α for all n ∈ N. Then inf g([〈tnw, ·〉 ≥ 1]) < −g∧(w) − α and we
can pick some w′

n ∈ [〈tnw, ·〉 ≥ 1] satisfying g(w′
n) < −g∧(w) − α. Since g is coercive,

(w′
n) is bounded. As the closed balls of W ′ are weak∗ compact, (w′

n) has a weak∗ cluster
point w′. By weak∗ lower semicontinuity of g we get g(w′) ≤ −g∧(w) − α < −g∧(w) and
〈w,w′〉 ≥ 1, a contradiction with the definition of g∧.

Suppose limw→0 f (w) = −∞. Then, for all r ∈ R we can find s > 0 such that f (w) <

−r for all w ∈ B(0, s), so that, by (5), for all w′ ∈ [ f ∧ ≤ r ] we have
∥∥w′∥∥ = s−1 sup{〈w,w′〉 : w ∈ B(0, s)} ≤ s−1 sup{〈w,w′〉 : w ∈ [ f < −r ]} ≤ s−1.

Thus the sublevel set [ f ∧ ≤ r ] is bounded and f ∧ is coercive.
Conversely, suppose g : W ′ → R is coercive. Given r ∈ R we can find s > 0 such

that [g < −r ] ⊂ B(0, s). Then, for all w ∈ B(0, s−1) and all w′ ∈ [g < −r ] we have
〈w,w′〉 < 1, hence w ∈ [g∧ ≤ r ]. Thus g∧(w) → −∞ as w → 0. ��
Corollary 1 Every l.s.c., radiant function f on W which is upper regular along rays is a
Legendre function on W\{0} for c∧ and ∂∧.

Proof Since f is radiant and l.s.c., it is evenly radiant. The conjugate of such a function
is also evenly radiant and l.s.c.. The other conditions of Definition 2 have been checked
above. ��
Example Now let us consider the case of nicely radiant functions, i.e., functions whose
sublevel sets are nicely radiant in the sense that these sets are closed, radiant and 0 belongs to
their interiors unless they are empty or reduced to {0}. Such a function attains its minimum at
0 and for all w ∈ W\{0} the sublevel set [ f ≤ f (w)] contains 0 in its interior. The conjugate
f � of a such a function is also radiant and l.s.c. since

[ f � ≤ r ] = {w′ ∈ W ′ : 〈w,w′〉 ≤ 1 ∀w ∈ [ f < −r ]} =
⋂

w∈[ f <−r ]
[〈w, ·〉 ≤ 1]

= [ f < −r ]�.

Moreover, if f is coercive, then f � is nicely radiant: for every r ∈ R, there exists s > 0
such that [ f < −r ] is contained in the closed ball s BW with center 0 and radius s, so that
[ f � ≤ r ] = [ f < −r ]� contains the ball s−1 BW ′ . Since the subdifferential associated with
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c� does not seem to be adapted, let us consider the subdifferential ∂� given by ∂� f (0) = W ′,
and, for w ∈ W\{0},

∂� f (w) := {w′ ∈ W ′ : 〈w,w′〉 = 1, inf f ([w′ > 1]) = f (w)}.
Then, every function is an Ekeland function for ∂� and the usual coupling function 〈·, ·〉
since whenever w ∈ (∂� f )−1(w′) we have 〈w,w′〉 − f (w) = 1 − inf f ([w′ > 1]). Thus
f E = f � + 1. Moreover, since f �� := ( f �)� = f when f is nicely radiant, for such a
function we have

w′ ∈ ∂� f (w) ⇐⇒ 〈w,w′〉 = 1, − f �(w′) = f (w) ⇐⇒ w ∈ ∂� f �(w′)
⇐⇒ w ∈ ∂� f E (w′).

Let us show that, when f is u.s.c. along rays, condition (b) of Definition 7 is satisfied and
in fact, that ∂� f (w) is nonempty for all w ∈ W\{0}. For that purpose, given w ∈ W\{0},
we apply the Hahn–Banach theorem to separate {w} from intS, where S := [ f ≤ f (w)] :
there exists w′ ∈ W ′ such that 〈u − w,w′〉 ≤ 0 for all u ∈ S and 〈u − w,w′〉 < 0 for all
u ∈ intS. In particular, for u = 0, we get t := 〈w,w′〉 > 0, so that, for w′ := t−1w′ we have
〈w,w′〉 = 1 and, since f is u.s.c. along rays inf f ([w′ > 1]) ≤ inf{ f (rw) : r > 1} ≤ f (w).

On the other hand, since 〈u, w′〉 ≤ 〈w,w′〉 = 1 for all u ∈ [ f ≤ f (w)], given v ∈ [w′ > 1],
we have f (v) > f (w), hence inf f ([w′ > 1]) = f (w). ��
Proposition 2 Suppose W is a reflexive Banach space and W ′ is the dual of W. Then, every
nicely radiant function which is u.s.c. along rays and coercive is a Legendre function for ∂�

and the usual coupling function 〈·, ·〉.
Proof As in the proof of the preceding proposition, we can show that if f is weakly l.s.c.
and coercive, then f � is u.s.c. along rays when W is reflexive. Thus the roles of f and
f � are entirely symmetric and what precedes shows that the conditions of Definition 7 are
satisfied. ��

4 The critical duality scheme

In this section the decision space X has no structure but with it is associated a pointed space
X ′ with base point 0X ′ ; the parameter space W has a base point 0W and is coupled with
some space W ′ by some coupling function c. The following definition introduced in [56] is
reminiscent of the notion of perturbation which is one of the two main approaches to duality
in convex analysis, the other one being the Lagrangian approach.

Definition 8 A subset P of W × X × W ′ × X ′ × R is said to be an hyper-perturbation of
J if

(x, x ′, r) ∈ J ⇔ ∃w′ ∈ W ′, (0W , x, w′, x ′, r) ∈ P}.
A subset P of W × X × W ′ × X ′ × R is said to be a critical hyper-perturbation of J if

(x, 0X ′ , r) ∈ J ⇔ ∃w′ ∈ W ′, (0W , x, w′, 0X ′ , r) ∈ P.

This definition is motivated by the case J is the one-jet of some function j. In such a
case, if q : W × X → R is a perturbation of j (also called a dualizing parametrization of
j), i.e., a function q such that q(0W , x) = j (x) for all x ∈ X (see [18,54,58,67]) and if q is
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smooth, one can take for P the one-jet of q . Then P is an hyper-perturbation of J. However,
q is seldom smooth. Therefore, one is led to detect a less stringent concept.

Here, observing that in the definition of a critical hyper-perturbation the role of X ′ is
limited to the use of its base point 0X ′ , we restrict our attention to a subset of the simpler
product space W × X × W ′ × R in which X ′ does not appear.

Definition 9 Given two pairs (W, W ′), (X, X ′) of sets, base points 0W , 0X ′ of W and X ′,
respectively, and a subset J ⊂ X × X ′ × R, a subset Q of W × X × W ′ × R is said to be a
critical perturbation of J if

(x, 0X ′ , r) ∈ J ⇐⇒ ∃w′ ∈ W ′, (0W , x, w′, r) ∈ Q.

It is said to be a critical hemi-perturbation of J if for all (x, r) ∈ X × R,

∃w′ ∈ W ′, (0W , x, w′, r) ∈ Q �⇒ (x, 0X ′ , r) ∈ J.

Note that for these two concepts J is not determined by Q; only extJ is determined by
Q. Also, several critical perturbations can be associated to J. If Q1 and Q2 are two subsets
of W × X × W ′ ×R such that Q1 ∩{0W }× X × W ′ ×R =Q2 ∩{0W }× X × W ′ ×R, Q2 is a
critical perturbation of J whenever Q1 is a critical perturbation of J. Given a subdifferential
∂ and a function q : W × X → R such that q(0W , ·) = j (·), two possible choices for a
critical hemi-perturbation of J are

Q0 := {(w, x, w′, q(w, x)) : 0X ′ ∈ ∂qw(x), w′ ∈ ∂qx (w)},
Q1 := {(w, x, w′, q(w, x)) : (w′, 0X ′) ∈ ∂q(w, x)}

where qx := q(·, x) and qw := q(w, ·).
Lemma 1 Let W and X be n.v.s. and let q : W × X → R and j : X → R be such that
j (·) = q(0W , ·) and J is the subjet J ∂ j of j.

(a) For any subdifferential ∂ , the set Q0 is a critical hemi-perturbation of J.

(b) If ∂ is the Fréchet, the Dini–Hadamard or the Clarke–Rockafellar subdifferential, then
Q1 is a critical hemi-perturbation J.

Proof Assertion (a) is obvious. Assertion (b) is a consequence of easy chain rules. The cases
of the Dini–Hadamard and the Fréchet subdifferentials are proved in [56]; let us check the
case of the Clarke–Rockafellar subdifferential. Let (w′, x ′) ∈ ∂C q(0W , x). Then, for any u
in the unit sphere SX of X , we have (0W , u) ∈ SW×X for any of the usual norms on W × X ,
so that there exists some modulus µ such that for every (y, v, t) ∈ X2 × R+ we have

q(0W , y + tv) ≥ x ′(tv) + q(0W , y) − µ(‖y − x‖ + ‖v − u‖ + t)t.

That shows that x ′ ∈ ∂C j (x). ��
In order to study the extremization problem

(P) find (x, r) ∈ X × R such that (x, 0X ′ , r) ∈ J,

given a coupling c : W × W ′ → R and a critical hemi-perturbation Q ⊂ W × X × W ′ × R

of J , considering Q as a parametrized family (Qx )x∈X of subsets of W × W ′ × R, with

Qx := {(w,w′, r) : (w, x, w′, r) ∈ Q},
we can rewrite the slice of the family (X ′ × E(Qx ))x∈X associated with 0W (where
(E(Qx ))x∈X is the family of Ekeland transforms of the sets Qx ’s), in the form

Q′ := {(x ′, w′, x, r ′) : x ∈ X, x ′ ∈ X ′, r ′ ∈ R, (w′, 0W , r ′) ∈ E(Qx )}.
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Now, we consider W ′ as a decision space, X ′ as a parameter space with base point 0X ′ and
W as a dual space to W ′ with base point 0W . This dual viewpoint leads us to introduce the
set

J ′ := {(w′, w, r ′) ∈ W ′ × W × R : ∃x ∈ X, (0X ′ , w′, x, r ′) ∈ Q′}.
Then we get the problem

(P ′) find (w′, r ′) ∈ W ′ × R such that (w′, 0W , r ′) ∈ J ′

called the adjoint problem. The problem

(P∗) find (w′, r) ∈ W ′ × R such that (w′, 0W ,−r) ∈ J ′

can be called the dual problem of (P). Denoting by extJ the solution set of (P), i.e., the set
of (x, r) ∈ X × R such that (x, 0X ′ , r) ∈ J and by ext J ′ the solution set of (P ′), we have
the next results which use the following notation:

Q(w, x, r) := {w′ ∈ W ′ : (w, x, w′, r) ∈ Q},
Q′(x ′, w′, r ′) := {x ∈ X : (x ′, w′, x, r ′) ∈ Q′}.

Such a notation is convenient, but not exactly consistent with the definition of a multimap
through its graph; note that when the graph takes place in a product of several factors as it is
the case here, several choices are possible and here we have interchanged the variables.

Our first result shows that the dual problem can help solving the primal problem.

Proposition 3 Let c : W × W ′ → R be a coupling such that c(0W , w′) = 0 for every
w′ ∈ W ′ and let J be a subset of X × X ′ × R as above. For any critical hemi-perturba-
tion Q of J, the set Q′ is a critical perturbation of J ′. Moreover, if (w′, r ′) ∈extJ ′, then
Q′(0X ′ , w′, r ′) is nonempty and for any x ∈ Q′(0X ′ , w′, r ′) one has (x,−r ′) ∈ extJ. Thus,
the set of values of (P∗) is contained in the set of values of (P).

Proof The first assertion is an immediate consequence of our construction:

(w′, 0W , r ′) ∈ J ′ ⇐⇒ ∃x ∈ X : (0X ′ , w′, x, r ′) ∈ Q′.

Now, if (w′, r ′) ∈extJ ′, i.e., (w′, 0W , r ′) ∈ J ′, there exists some x ∈ X such that
(0X ′ , w′, x, r ′) ∈ Q′ or x ∈ Q′(0X ′ , w′, r ′) or (w′, 0W , r ′) ∈ E(Qx ). Since c(0W , w′) = 0,

that means that (0W , x, w′,−r ′) ∈ Q. By definition of a critical hemi-perturbation of J , that
implies that (x, 0X ′ ,−r ′) ∈ J or (x,−r ′) ∈ extJ. ��

A more complete result can be obtained when Q is a critical perturbation of J.

Theorem 1 Let c : W × W ′ → R be a coupling such that c(0W , w′) = 0 for every w′ ∈ W ′
and let J be a subset of X × X ′ ×R as above. For any critical hemi-perturbation Q of J, the
set Q′ is a critical perturbation of J ′. Moreover, the problems (P) and (P ′) are in duality in
the following sense:

(a) if (w′, r ′) ∈extJ ′, then Q′(0X ′ , w′, r ′) is nonempty and for any x ∈ Q′(0X ′ , w′, r ′) one
has (x,−r ′) ∈ extJ ;

(b) if (x, r) ∈extJ, then Q(0W , x, r) is nonempty and for any w′ ∈ Q(0W , x, r) one has
(w′,−r) ∈ extJ ′;

(c) the set of values of (P) is the opposite of the set of values of (P ′).
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Proof (a) and the first assertion have been justified above. The other assertions are immediate
consequences of the definitions of Q′ and J ′ since

Q′ = {(x ′, w′, x, r ′) : (0W , x, w′,−r ′) ∈ Q}
as c(0W , w′) = 0 for every w′ ∈ W ′. In fact, assertion (b) results from the implications

(x, r) ∈ extJ ⇔ (x, 0X ′ , r) ∈ J

⇔ ∃w′ ∈ W ′ : (0W , x, w′, r) ∈ Q

⇔ ∃w′ ∈ W ′ : (0X ′ , w′, x,−r) ∈ Q′

so that for any w′ ∈ Q(0W , x, r) one has x ∈ Q′(0X ′ , w′,−r) i.e., (w′,−r) ∈ext J ′. Asser-
tion (c) is part of the preceding analysis. ��

In spite of the apparent symmetry between assertions (a) and (b) of the preceding state-
ment, the situation is not entirely symmetric: the parameter space X ′ of the adjoint problem
(P ′) is not provided with a pairing with X, so that we cannot return to the primal problem (P)

by using a similar device. Such a missing link is filled in other presentations of the theory;
see [13,14,56] and the short comparison of the next section.

Let us note however that symmetry can be obtained if we make a step further in strip-
ping the Ekeland theory. Instead of assuming W and W ′ are paired by a coupling function
and instead of considering critical perturbations, let us suppose we are given a subset R
of X × W ′ × R such that (x, 0X ′ , r) ∈ J if, and only if, there exists w′ ∈ W ′ such that
(x, w′, r) ∈ R. Let us call it a reduced perturbation and associate to it the subset R′ of
W ′ × X × R given by

(w′, x, r ′) ∈ R′ ⇐⇒ (x, w′,−r ′) ∈ R.

Then, introducing the set

J ′ := {(w′, w, r ′) ∈ W ′ × W × R : ∃x ∈ X, (w′, x, r ′) ∈ R′},
we get an adjoint problem in considering

(P ′) find (w′, r ′) ∈ W ′ × R such that (w′, 0W , r ′) ∈ J ′.

Then we have a statement similar to Proposition 3; here R′ is a reduced perturbation of J ′.
While such a process is of utmost simplicity, it leaves open the question of constructing

a reduced perturbation. The concepts of hyper-perturbation and critical perturbation, on the
contrary, provide a rather natural way of getting a dual problem.

5 Comparisons with other approaches

It is on purpose that we have chosen a bare framework which assumes no special structure on
the decision space X. Such a choice can be kept for the slightly different presentation in [56]
which relies on the notion of critical hyper-perturbation rather than on the use of a critical
perturbation. Let us clarify the relationships between these two concepts.

Rephrasing Definition 8, P is an hyper-perturbation of J if J coincides with the domain
of the slice P0 : X × X ′ × R ⇒ W ′ of P given by

P0(x, x ′, r) := {w′ ∈ W ′ : (0W , x, w′, x ′, r) ∈ P}.
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On the other hand, P is a critical hyper-perturbation of J if the slice J0 := {(x, r) :
(x, 0X ′ , r) ∈ J } of J coincides with the domain of the slice P00 : X × R ⇒ W ′ of P
given by

P00(x, r) := {w′ ∈ W ′ : (0W , x, w′, 0X ′ , r) ∈ P}.
Clearly, if P is an hyper-perturbation of J, then it is a critical hyper-perturbation of J.

For what concerns the relationships with critical hemi-perturbations, we have the follow-
ing obvious result.

Lemma 2 If P is a critical hyper-perturbation of J, then its slice

Q := {(w, x, w′, r) ∈ W × X × W ′ × R : (w, x, w′, 0X ′ , r) ∈ P} (6)

is a critical perturbation of J. Conversely, for every critical perturbation Q of J, the set

P := {(w, x, w′, 0X ′ , r) : (w, x, w′, r) ∈ Q} (7)

is a critical hyper-perturbation of J.

The set P just described is the smallest critical hyper-perturbation of J whose associated
slice is Q. The largest one is

P̂ := {(w, x, w′, x ′, r) : x ′ ∈ X ′, (w, x, w′, r) ∈ Q}.
For every subset S between P and P̂ the associated slice is Q.

Thus the notions of critical hyper-perturbation and critical perturbation are closely related.
It follows that the present duality scheme is equivalent to the one in [56]. Let us give some
details about the relationships between these two presentations. In [56], for any critical hyper-
perturbation P , we introduced the partial transform P ′ := EW (P) ⊂ X ′ × W ′ × X × W ×R

of P given by

P ′ := {(x ′, w′, x, w, c(w,w′) − r) : (w, x, w′, x ′, r) ∈ P}.
and the domain

J ′ = {(w′, w, r ′) ∈ W ′ × W × R : ∃x ∈ X, (0X ′ , w′, x, w, r ′) ∈ P ′}
of the slice P ′

0 : W ′ × W × R ⇒ X of P ′ given by

P ′
0(w

′, w, r ′) := {x ∈ X : (0X ′ , w′, x, w, r ′) ∈ P ′}
Then, for any critical hyper-perturbation P of J, the set P ′ is an hyper-perturbation of J ′,
hence is a critical hyper-perturbation of J ′. When Q is related to P by (6), we obtain the
same set J ′ as in the preceding section, hence the same dual problem. Moreover, if P is
deduced from Q by relation (7), then Q′ is deduced from P ′ by relation (6). Then Theorem
1 corresponds to [56, Thm 5].

Theorem 1 is related to [14, Prop. 3] which deals with the enlarged dual problem

(E ′) find (w′, x, r ′) ∈ W ′ × X × R such that (0X ′ , w′, x, 0W , r ′) ∈ P ′.

This dual clearly corresponds to the problem

(E) find (x, w′, r) ∈ X × W ′ × R such that (0W , x, w′, 0X ′ , r) ∈ P

via the relation r ′ = −r. [14,Prop. 3] is subsumed by the following statement. Each of its
assertions is equivalent to (0W , x, 0X ′ , w′,−r ′) ∈ P, hence implies that (x, r) is a solution
to (P) and (w′, r ′) is a solution to (P ′) for r = −r ′.
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Proposition 4 For an element (w′, x, r ′) of W ′ × X × R the following assertions are equiv-
alent:

(a) (w′, x, r ′) is a solution to (E ′);
(b) (x,−r ′) is a solution to (P) and w′ ∈ P0(x, 0X ′ ,−r ′);
(c) (w′, r ′) is a solution to (P ′) and x ∈ P ′

0(w
′, 0W , r ′).

Even this enlarged framework does not allow a full symmetry: since there is no coupling
between X and X ′, we cannot apply to (E ′) the same process. A more symmetric situation
is described in [14, Prop. 3] and in the next section.

6 The full Ekeland duality

When both pairs (W, W ′) and (X, X ′) are provided with couplings denoted by cW , cX (or
c if there is no risk of confusion) satisfying cW (0W , ·) = 0, cX (·, 0X ′) = 0, one can get a
more complete picture. Then one provides the pair (W × X, X ′ × W ′) with the coupling c
given by

c((w, x), (x ′, w′)) = cW (w,w′) + cX (x, x ′)

This coupling enables one to use the full Ekeland transform P ′
E := E(P) ⊂ X ′ × W ′ × W ×

X × R of P given by

P ′
E := {(x ′, w′, w, x, c(w,w′) + c(x, x ′) − r : (w, x, w′, x ′, r) ∈ P}.

We observe that since cX (·, 0X ′) = 0, the slice P ′
E,0 : W ′ × W × R ⇒ X of P ′

E given by

P ′
E,0(w

′, w, r ′) := {x ∈ X : (0X ′ , w′, w, x, r ′) ∈ P ′
E }

coincides with the slice P ′
0 of P ′ considered in the preceding section and its domain

J ′
E = {(w′, w, r ′) ∈ W ′ × W × R : ∃x ∈ X, (0X ′ , w′, x, w, r ′) ∈ P ′}

coincides with the domain J ′ of the slice P ′
0 of P ′. Thus, the problem

(P ′
E ) find (w′, r ′) ∈ W ′ × R such that (w′, 0, r ′) ∈ J ′

E

coincides with the adjoint problem (P ′). Denoting by extJ the solution set of (P), i.e., the
set of (x, r) ∈ X ×R such that (x, 0, r) ∈ J and by extJ ′

E the solution set of (P ′
E ), Ekeland’s

result is as follows. The proof is similar to the one of Theorem 1.

Theorem 2 For any critical hyper-perturbation P of J, the set P ′
E is an hyper-perturbation

of J ′
E , hence a critical hyper-perturbation of J ′

E . Moreover, the problems (P) and (P ′
E ) are

in duality in the following sense

(a) the adjoint (P ′′
E ) of (P ′

E ) is (P);
(b) if (x, r) ∈extJ, then PE,0(x, 0, r) is nonempty and for any w′ ∈ PE,0(x, 0, r) one has

(w′,−r) ∈extJ ′
E ;

(b′) if (w′, r ′) ∈extJ ′
E , then P ′

E,0(w
′, 0, r ′) is nonempty and for any x ∈ P ′

E,0(w
′, 0, r ′)

one has (x,−r) ∈extJ ;
(c) the set of values of (P) is the opposite of the set of values of (P ′

E ).

It is worth noting that when one disposes of couplings cW and cX as in the preceding
theorem, the adjoint problems (P ′) and (P ′

E ) coincide. That would not be the case if the
condition cX (·, 0X ′) = 0 were not satisfied.
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7 The Legendre duality

A case of special interest arises when one has a critical hyper-perturbation P of J which
is the subjet of some function q : W × X → R such that for each x ∈ X the function
qx := q(·, x) is an Ekeland function for a subdifferential ∂ and a coupling function c. That
means that for any w′ ∈ W, w1, w2 ∈ W such that w′ ∈ ∂qx (x1) ∩ ∂qx (x2) one has
cW (w1, w

′) − qx (w1) = cW (w2, w
′) − qx (w2). Then the projection on X ′ × W ′ × R of the

slice of P ′ corresponding to x, x ′ is the graph of a function.
If one has a critical hemi-perturbation Q of J and for some function q : W × X → R such

that for each x ∈ X the function qx := q(·, x) is an Ekeland function for a subdifferential ∂

and a coupling function c, with

Q := {(w, x, w′, q(w, x)) : w ∈ W, x ∈ X, w′ ∈ ∂qx (w)}
a similar advantage occurs. In such a case, for all x ∈ X the set Qx is the one-subjet of the
function qx . In particular, if qx is a Legendre function for c and ∂, the set E(Qx ) is contained
in the one-subjet of the Legendre transform q L

x of qx and

J ′ ⊂ {(w′, w, r ′) : ∃x ∈ X (w′, w, r ′) ∈ J ∂q L
x }.

Thus, one is led to the extremization of the functions q L
x .

8 Examples of duality schemes

Let us present various examples showing the versatility of the approaches presented above.

Example 1 (convex duality) Suppose W ′, W are locally convex topological vector spaces in
duality. Then one can take for c the usual coupling 〈·, ·〉 and one recovers the familiar convex
duality schemes. ��
Example 2 (subaffine duality [37,36,59–63]. . .) The following coupling function is more
appropriate to the study of general quasiconvex problems. Given a locally convex topolog-
ical vector space W with dual space W ∗, taking W ′ := W ∗ × R, this coupling is given
by

cQ(w, (w∗, r)) := 〈w∗, w〉 ∧ r (w∗, r) ∈ W ′, w ∈ W,

where r ∧ s := min(r, s) for r, s ∈ R. Initiated in [61], a full characterization of the class
of cQ-convex functions has been given in [36, Prop. 4.2]: f : W → R is cQ-convex iff f
is lower semicontinuous, quasiconvex and for any λ < sup f (W ) there exists a continuous
affine function g such that g∧λ ≤ f. Taking the base point 0W ′ := (0W ∗ , 0R), we see that the
condition cQ(w, 0W ′) = 0 for all w ∈ W is satisfied, but not the condition cQ(0W , w′) = 0
for all w′ ∈ W ′. ��
Example 3 (lower quasiconvex duality) Suppose W ′, W are as in Example 1 and c is taken
as

c<(w,w′) := −〈w′,−w〉+ = 〈w′, w〉 ∧ 0 (w′, w) ∈ W ′ × W, (8)

Note that c<(w,w′) = cQ(w, (w′, 0)). Now the condition cQ(0W , w′) = 0 for all w′ ∈ W ′
is satisfied. See [36,49,60,61] for the connexion with Plastria’s subdifferential ([64]).

123



334 J Glob Optim (2008) 40:319–338

Example 4 (radiant conjugacies) Let W be a n.v.s., let W ′ be its dual and let c∧ and c�

be the couplings given by c∧(w,w′) = −ι[w′≥1](w) and c�(w,w′) = −ι[w′>1](w). These
conjugacies do not satisfy the condition c(·, 0W ) = 0. However, we have seen that we can
use the conjugacies associated with these couplings simultaneously with the usual coupling
and an adapted subdifferential. ��
Example 5 (shady conjugacies) Let W be a n.v.s., let W ′ be its dual and let c∨ and c∇
be the couplings given by c∨(w,w′) = −ι[w′≤1](w) and c∇(w,w′) = −ι[w′<1](w). Then
c∨(0W , ·) = 0 and c∇(0W , ·) = 0. These conjugacies are of interest as they apply to quasi-
convex functions f which are shady (or co-radiant) in the sense that f (tw) ≤ f (w) for all
w ∈ W, t ≥ 1. Utility functions in mathematical economics typically are opposites of such
functions. See [48,53,86–89,91] for more on such functions. Criteria of the type of Corollary
1 can be devised for that class. ��
Example 6 (starshaped duality, [48,50,72,81–83,93,94]) Let W be a convex cone in a n.v.s.
and let W ′ be the set of continuous superlinear functions on W, c being the evaluation map-
ping given by c(w′, w) := w′(w). Then a nice and simple separation theorem (see [94] and
the appendix of [54]) shows that the family of c-convex subsets containing 0 coincides with
the family of closed starshaped subsets of W, i.e., closed subsets S such that t x ∈ S for any
t ∈ [0, 1] and x ∈ S, so that a function f is c-convex, i.e., such that f cc = f, if, and only
if, f is l.s.c. and quasi-starshaped i.e., such that f (tw) ≤ f (w) for all w ∈ W, t ∈ [0, 1].

A specialization of this duality occurs when W ′ = R
n, and W = R

n+ and one considers
the coupling function cm defined on W ′ × W for w = (w1, . . . , wn), w′ = (w′

1, . . . , w
′
n) by

cm(w′, w) = − max
1≤i≤n

w′
iwi (9)

��
Example 7 (modular duality) [22,23,35,43] Given a set S, let W be a subfamily of the set
P f (S) of finite subsets of S endowed with the order given by inclusion and let W ′ be a subset
of the space of real-valued functions on S. Assume ∅ ∈ W and set for w′ ∈ W ′, w ∈ W,

c(w′, w) :=
∑

s∈w

w′(s)

with the convention c(∅, w′) = 0. This example is important for discrete optimization: when
W is a distributive sublattice of P f (S), c-affine functions correspond to modular functions,
i.e., functions f : P f (S) → R satisfying

f (A ∩ B) + f (A ∪ B) = f (A) + f (B) ∀A, B ∈ P f (S).

These functions are very simple as they are determined by their values on ∅ and the singletons:

f (A) = f (∅) +
∑

a∈A

f ({a}).

Any function f : P f (S) → R which is submodular, i.e., such that

f (A ∩ B) + f (A ∪ B) ≤ f (A) + f (B) ∀A, B ∈ P f (S)

can be extended to a convex function f̂ : R
S+ → R given by f̂ (w′) = ∑k

i=1 λi f (Ai ) if
w′ = ∑k

i=1 λi 1Ai with λi ∈ R+\{0}, Ak ⊂ Ak−1 ⊂ · · · ⊂ A1 are distinct subsets (see
[35,Prop. 4.1]). The fact that one disposes of an adapted subdifferential, of a sandwich theo-
rem ([23]) and of duality results ([22,38]) points out the analogies with convexity. Here the
condition c(0W , ·) = 0 is satisfied when one takes the base point 0W := ∅. ��
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Example 8 (homotone duality) Let (W,≤) be a preordered space and let W ′ be the set of
homotone (i.e., nondecreasing) functions on W. Then the evaluation mapping (w′, w) �→
w′(w) is a coupling. The special case W = R

d , W ′ being the set of superadditive homotone
functions null at 0 is considered in [90]; for positively homogeneous homotone functions see
[39,40,74–80]. The important case W is a distributive lattice and W ′ is formed of modular
or submodular functions is also included in the present example.

Example 9 (partial sublevel duality) Let W be a n.v.s. and let W ′ := W ∗ × R−. Let c� be
given by c�(w, (w∗, r)) = −ι[w∗≥r ](w). This duality has been used in [49,84,91]. ��

Example 10 (augmented duality) Given a coupling function c : W × W ′ → R and a func-
tion a : W → R, let ca : W × W ′ → R and ĉa : W × R × W ′ → R be given by
ca(w,w′) := c(w,w′) − a(w) and ĉa(w, r, w′) := c(w,w′) − ra(w) = cra(w,w′). Then
one can enlarge the class �c(W ) of c-convex functions to the class �c,a(W ) := { f ∈ R

W :
f + a ∈ �c(W )} or

⋃

r>0

�c,ra(W ). In the classical case of Example 1, W being a Hilbert

space, for a(·) = (1/2) ‖·‖2 we get the traditional augmented Lagrangian duality. Then any
function f such that f − a ∈ �c(W ) is a Legendre function. ��

Other examples are given in [4,36,37,49,51,70–86,89] for instance.
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95. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

123


	Critical duality
	Abstract
	Introduction
	The Ekeland duality scheme
	Some adapted classes of functions
	The critical duality scheme
	Comparisons with other approaches
	The full Ekeland duality
	The Legendre duality
	Examples of duality schemes


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


